A woman looks at the Facebook logo on an iPad in this photo illustration.

Facebook develops AI algorithm that learns to play poker on the fly

Facebook researchers have developed a general AI framework called Recursive Belief-based Learning (ReBeL) that they say achieves better-than-human performance in heads-up, no-limit Texas hold’em poker while using less domain knowledge than any prior poker AI. They assert that ReBeL is a step toward developing universal techniques for multi-agent interactions — in other words, general algorithms that can be deployed in large-scale, multi-agent settings. Potential applications run the gamut from auctions, negotiations, and cybersecurity to self-driving cars and trucks.

Combining reinforcement learning with search at AI model training and test time has led to a number of advances. Reinforcement learning is where agents learn to achieve goals by maximizing rewards, while search is the process of navigating from a start to a goal state. For example, DeepMind’s AlphaZero employed reinforcement learning and search to achieve state-of-the-art performance in the board games chess, shogi, and Go. But the combinatorial approach suffers a performance penalty when applied to imperfect-information games like poker (or even rock-paper-scissors), because it makes a number of assumptions that don’t hold in these scenarios. The value of any given action depends on the probability that it’s chosen, and more generally, on the entire play strategy.

Unlock premium content and VIP community perks with GB M A X! Join now to enjoy our free and premium perks. 

Join now →

Sign in to your account.