DeepMind logo

DeepMind technique encourages AI players to cooperate in zero-sum games

In a preprint paper, DeepMind described a new reinforcement learning technique that models human behavior in a potentially new and powerful way. It could lead to much more capable AI decision-making systems than have been previously released, which could be a boon for enterprises looking to boost productivity through workplace automation.

In “Learning to Resolve Alliance Dilemmas in Many-Player Zero-Sum Games,” DeepMind — the research division of Alphabet whose work chiefly involves reinforcement learning, an area of AI concerned with how software agents ought to take actions to maximize some reward — introduces an economic competition model with a peer-to-peer contract mechanism that enables the discovery and enforcement of alliances among agents in multi-player games. The coauthors say that this sort of alliance formation confers advantages that wouldn’t exist were the agents to go it alone.

Unlock premium content and VIP community perks with GB M A X! Join now to enjoy our free and premium perks. 

Join now →

Sign in to your account.